スーパーコンピュータ「京」を知る集い

計算機で観る蛋白質の形と動き

理化学研究所計算科学研究機構 粒子系生物物理研究チーム 杉田有治

細胞内環境でのタンパク質

細胞の模式図

細胞内には様々なオル ガネラ(細胞内小器官) が存在

\downarrow

それぞれの環境で異なるタンパク質が働く

- 1. 細胞質→水溶性タンパク質
- 2. 細胞膜→膜タンパク質
- 3. 核内→DNA結合タンパク質

DNAとタンパク質

遺伝情報に基づいて必要なタンパク質をつくる

Molecular Biology of the Cell (Fifth Ed.)

タンパク質の成分: 20種類のアミノ酸

タンパク質はアミノ酸がペプチ ド結合で繋がった鎖状の分子

ミオグロビンのアミノ酸配列

- 1 VLSEGEWQLV LHVWAKVEAD VAGHGQDILI RLFKSHPETL EKFDRFKHLK
- **51** TEAEMKASED LKKHGVTVLT ALGAILKKKG HHEAELKPLA QSHATKHKIP
- **101** IKYLEFISEA IIHVLHSRHP GDFGADAQGA MNKALELFRK DIAAKYKELG

151 YQG

(1MBN Chain A)

X線結晶解析による構造決定

英国のジョン・ケンドルーらが、血液中で酸素を貯蔵・ 運搬する"ミオグロビン"の結晶をつくってX線を照射し、 原子レベルで立体構造を明らかにした(1962年ノーベ ル化学賞受賞)

タンパク質結晶の例 と、結晶構造解析で用 いられるブラッグ反射 の原理図

(参考: Fersht, A. R. (2008) Nature 9:650-654.)

ヘムに含まれる鉄が酸素原子を吸着

いろいろなタンパク質とその形

リゾチーム 細菌の膜を壊す アルコール脱水素酵素 アルコールを解毒する

カルシウムイオンポンプ

ATP合成酵素 細胞における反応過程 の動力を供給する ATPの大半を作る

PDBj 今月の分子 http://www.pdbj.org/mom/index.php?l=ja

タンパク質は動いている(1)

ATP合成酵素は回転する分子モーター

野地らは、1998年に世界に先駆けて、ATP 合成酵素の一部であるF1-ATPaseが回転す る分子モーターであることを実験的に示した。 (Noji, H. Science (1998) など)

東大野地研究室のホームページ参照 http://www.nojilab.t.u-tokyo.ac.jp/index.html

タンパク質は動いている(2)

イオンポンプは、ATPを動力源としてイオンを輸送する

豊島らは、複数のX線結晶構造を解くことで、イオンポンプがATP を動力源としてカルシウムイオンを輸送する機構を解明した。 (Toyoshima et al, Nature (2000) など)

東大豊島研究室のホームページ参照 http://www.iam.u-tokyo.ac.jp/StrBiol/jp/

イオンポンプの生体膜中での分子運動

イオンポンプのイオン結合部位の運動

Newtonの運動方程式を解く → タンパク質中の原子の運動が分かる

$$m_i \frac{d^2 \mathbf{r}_i(t)}{dt^2} = \mathbf{F}_i(t) = -\frac{dU(\mathbf{r}^N)}{d\mathbf{r}_i}$$

上の式のままでは解けないので、繰り返し計算を実行する

$$\mathbf{r}_{i}(t + \Delta t) = \mathbf{r}_{i}(t) + \Delta t \mathbf{v}_{i} \left(t + \frac{\Delta t}{2} \right),$$
$$\mathbf{v}_{i} \left(t + \frac{\Delta t}{2} \right) = \mathbf{v}_{i} \left(t - \frac{\Delta t}{2} \right) + \Delta t \frac{\mathbf{F}_{i}(t)}{m_{i}}$$

時間刻みΔtは、フェムト秒(10⁻¹⁵秒=千兆分の1秒)に制限される

- → 1秒の運動を観るためには千兆回の繰り返し計算が必要
- → 現在の計算機の演算量ではマイクロ秒(百万分の1秒)程度が限界 (それでも、十億回の繰り返し計算を実行)

イオンポンプの生体膜中での分子運動

シミュレーションの原子数

タンパク質の原子数:約15000 生体膜の原子数:約50000 水やイオンの原子数:約200000

莫大な分子間相互作用

- 原子数 X 原子数 = 26万 X 26万
- = 約600億回の計算量(毎ステップ)

1マイクロ秒の計算をするため 600億回(相互作用) X 10億回(繰り返し)

「京」やもっと速い計算機が必要

タンパク質の計算からわかること

- 立体構造形成
 - 立体構造予測、新しいタンパク質のデザイン
- 変性と凝集

- アルツハイマー病などの原因解明へ

• 分子認識

- 創薬、分子設計への応用

• 細胞内分子ダイナミクス

- 細胞まるごとモデリングへ

茹でると抗菌作用を担うリゾチームというタンパク質のかたちが変わって しまい機能しなくなる

タンパク質の立体構造形成

生理的条件下での 自発的巻き戻り

天然状態

タンパク質折れ畳みの シミュレーション

Villin (アミノ酸36残基) マイクロ秒で折れ畳む 小タンパク質

Yoda et al. Biophys. J. (2010)

タンパク質の変性と凝集

アルツハイマー病の原因は、アミロイドベータタンパク質の変性と凝集であると考えれられている

D.J. Selboe, Nature Cell Biology, 2004

タンパク質の変性と凝集

実験的によくわからない アミロイド前駆体の膜中での 構造(二量体)を 分子シミュレーションで解明 Miyashita et al. JACS (2009)

J.E. Straub and D. Thirumalai, Annu. Rev. Phys. Chem. 2011

• タンパク質は、特定の分子(基質)を認識し機能を発現する

古典的な「鍵と鍵穴モデル」(左)と、 ダイナミクスを考慮した「平衡シフト モデル」(右)

Relenzaは、親水性が高すぎるの で腸から吸収されない。

Inhaled drug 吸入薬 粉末状の薬を専用の吸入器によって吸い 込む

まとめ

- タンパク質の分子動力学計算は、分子間相
 互作用を繰り返し解く必要があるため莫大な
 計算量を必要とする。
- ・しかし、この計算は
 - タンパク質の構造形成
 - タンパク質の凝集と変性
 - タンパク質の分子認識と創薬応用
 - 細胞内でのタンパク質ダイナミクス

などの原子レベルの情報を得るために不可欠な方 法である。