

プロフィール 佐々木 節(ささき たかし)

【現職】

高エネルギー加速器研究機構(KEK) 計算科学センター 教授

【略歴】

1993年 博士(理学) 新潟大学

1993年 高エネルギー物理学研究所 物理研究部 研究員

1994年 高エネルギー物理学研究所 データ処理センター 助手

2003年 高エネルギー加速器研究機構 計算科学センター 助教授

2007年 高エネルギー加速器研究機構 計算科学センター 教授

【主たる研究テーマ】

放射線シミュレータの開発およびその医学応用

【主たる担当業務】

GRID技術の導入

グリッドの国際連携

高エネルギー加速器研究機構 計算科学センター 佐々木節

科学の国際化とグリッド

- 科学の国際化
 - 人的交流
 - 資源共有
 - 計算機、研究施設、情報
- 国際共同研究のためのITインフラが必要
- グリッドの登場
 - SuperComputerの共用に始まり、データ共有、 情報共有に広がる

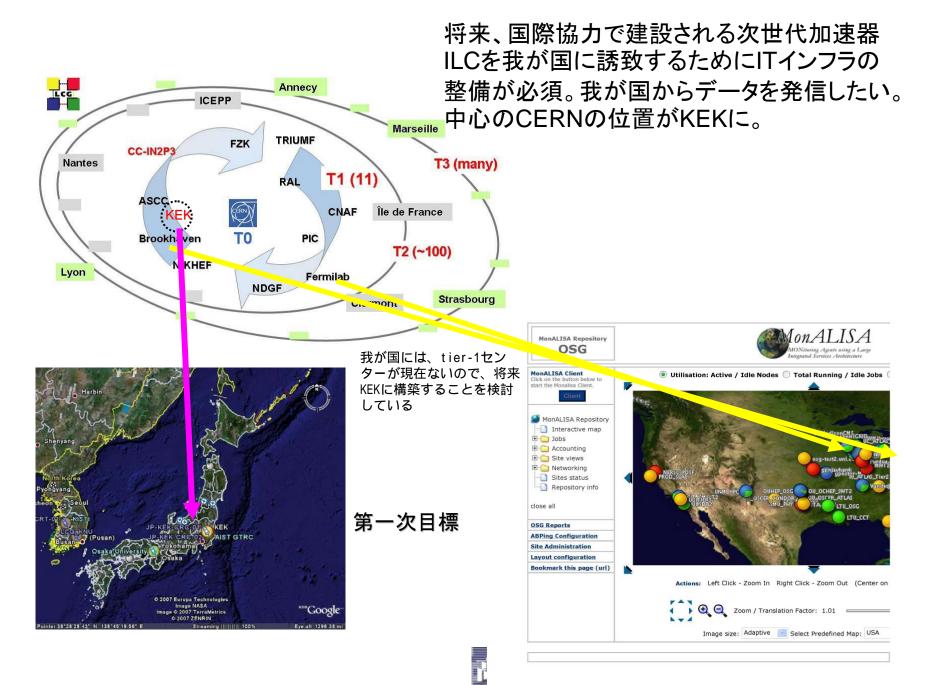
高エネルギー物理学 (HEP)におけるGRID

- HEPのプロジェクトは、非常に国際協調的
 - 仮想組織に相当するものが以前から存在している
 - MoU (Memory of Understanding)を結び、資源(予算含め)を出し合う
 - GRID技術は、非常にスムースにこの分野に取り入れられ、データグリッド機能が特に強化された
- スイスのCERN(wwwの生誕地としても有名)では、建設しているLHC (Large Hardon Collider) 加速器における実験データ解析のためにグリッドの開発に注力している
 - e.g. gLite
- 世界的に見ると、LCG(LHC Computing GRID) と OSG (Open Science GRID)、NorduGrid(北欧)がこの分野での 3大GRID
 - LCG=gLite + HEP special

他の分野への応用

- bio medical
 - がん治療のシミュレーション
 - 粒子線治療
 - 加速器を使ったがん治療
 - http://g4med.kek.jp
 - 画像診断装置のシミュレーション
 - たんぱく
 - http://gpsa.ibcp.fr/
- 計算化学
- 天文学
- 核融合

GRIDs


- OGFのweb(http://www.ogf.org)によれば、全世界に40以上のGRIDの団体がある
 - ミドルウエアの開発を独自に行っている場合も多い
- W-LCG (LCG運用の枠組み)は、現在、以下の3つの GRIDをフェデレーションしている(ファイルの交換のみ)
 - EGEE (Europe + Asia + Canada)
 - OSG (US)
 - NorduGrid (Nordic countries)
- 単一のミドルウエアを利用し、単一のGRIDを形成するのは、もはや不可能
- GRID間の相互運用性の確立が急務

グリッドミドルウエア

- 国策的に開発が進められており、地域毎にミドルウエアが開発されている
 - US
 - Teragrid, Open Science GRID, 他
 - EU
 - EGEE
 - NorduGRID
 - 他
 - ASIA
 - NAREGI
 - ChinaGRID
 - ほか
- ミドルウエア間の相互運用性の確立が大きな課題
 - ほとんどのものがglobus toolkitを基にしているにも関わらず、互換性がない
 - NAREGIが世界をリード

国際化と国産ミドルウエア

- 各国と協調しつつ我が国のプレゼンスを顕示することが真の 国際化
 - 欧米主導のソフトウエアを輸入して利用することではない
- ミドルウエアの運用には大きなコストが必要であり、その地域の事情に根ざしたミドルウエアとその運用形態が必要
 - インフラの整備への投資額が我が国は明らかに少ない
 - 我が国では、人件費が高い
 - 省人的資源を考慮に入れる必要がある
 - 中央集権的運用モデルが必要
- NAREGIへの期待が大きい
 - 相互運用性の確立が最重要
 - 運用モデルの構築を急いで頂きたい

まとめ

- GRIDの国際連携は、国際的な研究に不可欠
 - GRID技術が国際化(我が国のプレゼンスの拡大)をさら に後押し
- 国産ミドルウエア無しには、運用体制を確立し、維持するのは難しい
 - ほかのミドルウエアとの相互運用性の確立が必要
 - アジア諸国との連携も今後は重要
 - 時差がないことは、運用支援上の利点
 - GRIDの展開、運用に関しては、我が国は後進国であるという自 覚も必要
- NAERGIの今後に期待
 - 開発の継続が必要