第一原理計算による局所応力解析

椎原良典1,香山正憲2,田中真悟2,田村友幸1,石橋章司1

1産業技術総合研究所計算科学研究部門,2産業技術総合研究所ユビキタスエネルギー研究部門

y.shiihara@aist.go.jp

概要:ペタフロップス級大型計算機上で動作する第一原理計算ソフトウェアの主な対象である表面, 界面,粒界,欠陥,アモルファス等を含む大規模原子系においては,局所的な応力状態に関する情報 が様々な原子論的メカニズムを議論する上で有用である.本稿では,第一原理計算法による局所応力 解析の具体的方法とその適用例について述べる.

1 はじめに

近年,表面原子の再構築,界面接合,表面上で の自己組織化,粒界破壊等の原子論的メカニズム を議論するための一方法として,量子力学に基づ く第一原理応力シミュレーションが注目されてい る.しかしながら,従来の第一原理計算から得ら れる応力はスーパーセル上で平均化された巨視的 な物理量であり,局所的な応力分布を得ることは できない.ペタフロップス級大型計算機上で動作 する第一原理計算ソフトウェアの主な目的は表面, 界面,粒界,欠陥,アモルファス等を含む,原子 を多数擁する系の解析であり,そのような系にお いては,セル体積上で平均化された巨視的応力か ら得られる情報は極めて少ない.従って,原子の 不均一構造を反映した局所的応力分布を得ること が可能な,新しい計算法の確立が必要である.

局所応力計算における難点の一つは,局所応力 の計算に用いる応力密度が一意に決まる物理量で ないことにある^[1].このことは密度汎関数法にお けるエネルギー密度の非一意性の問題に由来する. 従来の研究では,単位格子長等の特性長を用いて 局所的に平均化することにより,この非一意性を 回避していた.しかしながら,この手法を特性長 の決まらない原子緩和された系に対して適用する ことは難しい.

本研究では運動エネルギー密度の非一意性に着 目した手法を用いてこの非一意性の問題を回避す る.運動エネルギー密度内の非一意応力密度項の 積分値が消える部分領域を探索し,その領域内で 応力密度を積分することで一意な局所応力を得る. 本稿では手法の詳細を示し,基礎的解析例として diamond/cBN(110)界面の一次元局所応力分布の計 算結果を示す.

2 計算手法

応力密度の定義について述べる^[2]. 巨視的応力

 σ_{ij} は全エネルギーの歪微分として式(1)で定義される.

$$\sigma_{ij} = \frac{1}{V} \frac{\partial}{\partial \varepsilon_{ij}} \int e_{\text{tot}}(\mathbf{r}) dV \quad (1)$$

Vはセル体積であり、 e_{tot} は密度汎関数法に基づく 全エネルギー密度である.式(1)から、 σ_{ij} を応力密 度 τ_{ii} の汎関数として式(2)で表す.

 $\sigma_{ii}(\mathbf{r}) = \int \tau_{ii}(\mathbf{r}) dV \qquad (2)$

すなわち,応力密度はエネルギー汎関数を歪微分 したものの被積分項として定義される.

本研究では、エネルギー密度の非一意性の問題 は運動エネルギーにのみ存在すると仮定する.密 度汎関数法における一電子近似の下で、運動エネ ルギー密度 t を式(3)で表す.

$$t(\mathbf{r}) = \frac{1}{2} f_i \nabla \phi_i^*(\mathbf{r}) \cdot \nabla \phi_i(\mathbf{r}) + \alpha \nabla^2 \rho(\mathbf{r})$$
(3)

ここで ϕ_i は一電子波動関数, f_i は軌道の占有数, $\rho(\mathbf{r})$ は電子密度, α は任意の定数である. t をセル 全体で積分すると,任意の α について運動エネルギ ーは同じ値となる. すなわち,運動エネルギー密 度には α の任意性があり,そこから得られる応力密 度は一意に決まらない. この非一意性の問題を除 くため, $\nabla^2 \rho(\mathbf{r})$ の応力密度の積分値がゼロとなる 部分領域を求める.任意の部分領域V'上における $\nabla^2 \rho(\mathbf{r})$ の応力密度の積分値 σ_{ij} を計算すると式 (4)となる.

$$\sigma_{ij}^{L} = \int_{V'} \frac{\partial}{\partial r_{i}} \frac{\partial \rho(\mathbf{r})}{\partial r_{i}} dV \qquad (4)$$

式(4)の体積分を面積分に変換すると、部分領域が 満たすべき条件として式(5)が得られる.

$$\int_{S'} \frac{\partial \rho(\mathbf{r})}{\partial r_j} \mathbf{e}_i \cdot \mathbf{n} dS = 0 \quad (i, j = 1, 2, 3)$$
(5)

ここで \mathbf{e}_i はx, y, z軸上の単位ベクトルである.式(5) を満たす部分領域上で応力密度を積分することに よって,一意に局所応力が得られる.また,その 部分領域は電子密度分布によって決まる.

3 計算結果

上述の手法を用いて,diamond/cBN(110),(7+7) 界面について局所応力を計算した.エネルギー密 度および応力密度は PAW 法に基づく第一原理計 算ソフトウェア QMAS によって計算した^[3].原子 構造緩和後およびセル最適化後に得られた格子定 数を diamond 結晶および cBN 結晶のものとあわせ て Table 1 に示す.表中 *a,b,c* はそれぞれ *x,y,z* 軸に 平行な辺の長さである.簡単のため,Fig.1 に示す ように周期境界条件下の直方体セルを z 方向に一 次元分割することを考える.このとき, *xy* 方向に ついては常に式(5)を満たすことから, σ_{33} のみ考 慮すればよい.ここでは *x-y* 面における電子密度 の流束で表される式(6)を分割の条件とした.

$$\int \frac{\partial \rho(\mathbf{r})}{\partial z} dx dy = 0 \qquad (6)$$

Fig.2 に電子密度流束の分布を示す. 破線は式(6) に基づき設定した分割面である. ただし, PAW 法 を用いていることから, 核近傍の分割面は除いた. Fig.2 に示されている通り, 原子層ごとに部分領域 が設定されることから, 局所応力は原子層ごとに 計算される. Fig.3 に得られた局所応力を成分ごと に示す. 破線は界面の位置を表す. 面内応力 σ_{11} , σ_{22} は, diamond 層で正となっていることに対して, cBN 層では負となっている. これは Table 1 に示し た格子ミスマッチを反映したものである. すなわ ち, diamond 層には引っ張り応力, cBN 層には圧 縮応力が作用している. また, セル最適化の過程 で原子の z 方向変位は拘束されていないため, σ_{33} はほぼ 0 となっている.

4 まとめ

第一原理計算による局所応力計算法を示した. 本手法により一意な局所応力を計算することがで きる. diamond/cBN(110), (7+7)界面について計算例 を示し,局所応力から界面の不均一原子構造を反 映する結果が得られることを示した.今後は,こ の分割モデルを3次元に拡張し,粒界の強度問題 等に適用することでその実用性を検証する.

参考文献

- R. Martin, *Electronic structure, Basic theory and practical methods*, 517, CAMBRIDGE UNIVERSITY PRESS, (2005). (See the references therein.)
- [2] A. Filippetti and V. Fiorentini, "Theory and applications of the stress density", *Phys. Rev. B*, 61, 8433, (2000).
- [3] S. Ishibashi, T. Tamura, S. Tanaka, M. Kohyama and K. Terakura, "Ab initio calculations of electric-field-induced stress profiles for diamond/c-BN (110) superlattices", *Phys. Rev. B*, 76, 153310, (2007); http://www.qmas.jp.

Table 1 Lattice constants (Å) of diamond/cBN(110) (7+7), diamond bulk and cubic BN bulk^[3]

	а	b	С	
7+7	2.541	3.598	17.831	
Diamond	3.569			
cBN	3.621			

Fig.1 Schematic view of 1-dimensional separation in diamond/cBN (110)

Fig.3 Local stress components for each atomic layer in diamond/cBN (110)