創薬における計算科学の役割

大正製薬(株) 北村一泰

代表的*医薬品の医療貢献

疾 患	一般名	医療貢献
統合失調症	クロルプロマジン	・神経科の「閉鎖病棟」を開放する大きな動機づけ
うつ病 不安神経症	パロキセチン	・社会復帰に貢献
	ベンラファキシン	
循環器系疾患 高血圧症 不整脈 狭心症 心筋梗塞 心不全	プロプラノロール	・心臓発作、脳卒中の激減(約75%)
	ジルチアゼム	
	カプトプリル	
	ロサルタン	
	プラバスタチン	
消化性潰瘍	シメチジン	- 手術の激減(約80%減)(胃潰瘍及び十二指腸潰)
	オメプラゾール	
慢性骨髄性白血病	イマチニブ	-5年後生存率の向上(95%)
感 染 症 結 核	ペニシリン	・結核感染死亡率・手術の激減
		・セファロスポリン、マクロライド、キノロン等の抗菌 剤研究の基礎
臓器移植	サイクロスポリン	・臓器移植が可能になる(特に肝臓、腎臓)

*演者の偏見と独断

創薬研究における主要検討項目

スクリーニング 系 構 築

リード創出

リード化合物最適化

スクリーニング系の確立&HTS HTSとット化合物のSARの確認 リート・化合物創出のための合成(含C.C.) ↓↑ (リート・)化合物のプロファイリング

薬 効:

· in vitro 薬効試験

体内動態:

- •血中濃度
- ・比肝ミクロソーム代謝安定性
- ·Cyp阻害(数分子種)
- 反応性代謝物(GSHトラッピングアッセイ)etc.

安全性:

- Ames
- hERGチャネル結合(心血管系毒性)

物性:

·純度、*溶解度(水)、分配係数*

リード化合物の最適化(含C.C.)

薬 効:

• *in vitro*、in vivo薬効試験

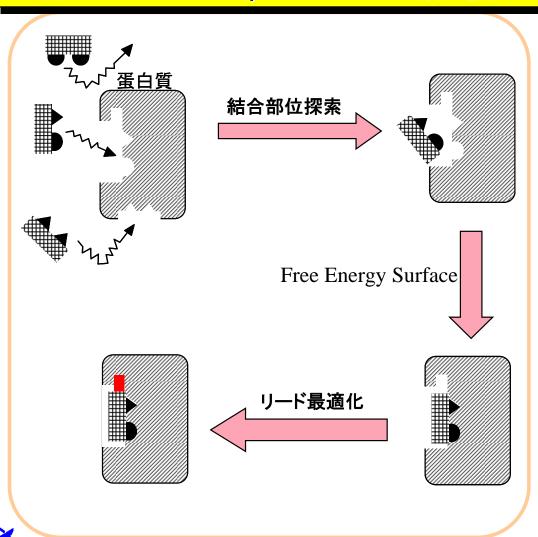
体内動態:

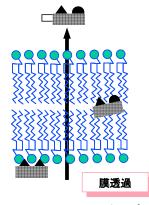
- •血中濃度
- ・ヒト肝ミクロソーム代謝安定性
- ·*競合Cyp阻害*
- 代謝依存的Cyp阻害
- ・反応性代謝物(GSHトラッピングアッセイ)
- ・アルブミンとの結合率(ヒト、動物)
- ・ラット&大動物PK試験/組織分布
- ・P糖タンパク質関与の有無 etc.

安全性:

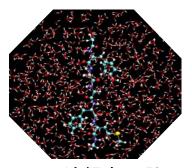
- Ames
- •一般毒性(単回/反復投与)
- ・心血管系毒性(hERGチャネル結合/電流、 Ca2+チャネル結合、モルモット/イヌ心電図)

物性:

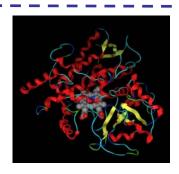

·純度、溶解度(水)、分配係数



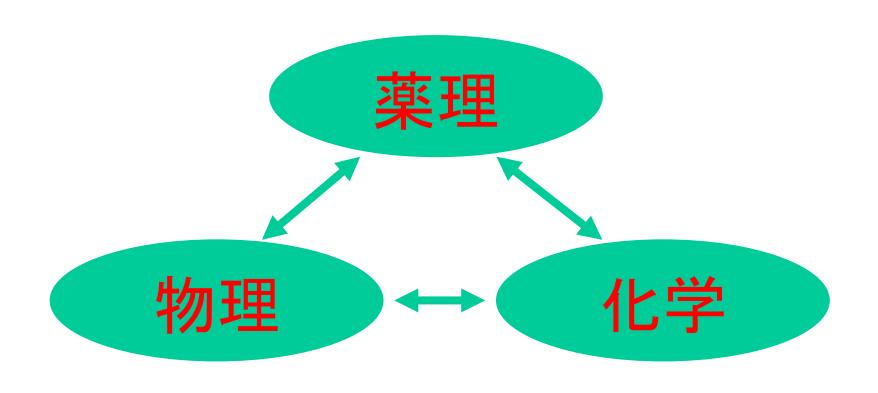
☆ 斜字:分子シミュレーションの適用対象 ☆


物理法則に基づいた「創薬」

in Silico HTS & Optimization (概念図)



膜透過自由エネルキ゛ープロファイル



溶解度予測

肝代謝:CYP相互作用解析

近未来の創薬では3分野の専門家のcollaborationが必要

