分子ナノサイエンス

- 分子が作るナノスケールの物質世界 -

名古屋大学/分子研 岡崎 進

ナノスケールの分子系に特有な化学的、物理的性質の発現、新たな機能の創出

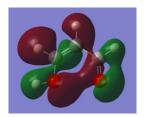
分子

ナノ空間の電子状態を操る 化学結合 多様な電子状態、物質系

大きな量子効果化学的機能の発現

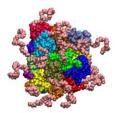
分子集合体

ナノスケールの構造を操る 構造形成・自己組織化 やわらかく多様な構造 形成された構造による

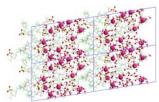

機能の発現

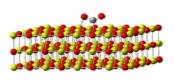
分子が作る界面・表面


特殊な環境を操る


多様な不均一系 液液、気液、固気、固液界面 固液気三相界面

バルクにない特性の発現





計算科学

量子化学 分子シミュレーション 化学統計力学 反応動力学

分子ナノサイエンスにおける計算科学研究

グランドチャレンジ研究

次世代エネルギー

クラスレートハイドレート、バイオマス、燃料電池、 二次電池、光エネルギー変換

次世代ナノ生体物質・ナノ分子材料

ウイルス制御、DDSナノキャリヤー、タンパク質制御、 未来型ドラッグデザイン、界面活性剤、高分子機能膜

次世代物質変換

新規触媒設計、ナノ構造体反応場設計、界面反応設計、 酵素反応設計

次世代ナノ機能性分子

分子素子・光機能分子、ナノ炭素材料・グラフェン、 集積分子系、非線形外場応答分子

学術基盤研究

量子化学

FMO/MP2

高精度理論、密度汎関数理論

分子シミュレーション

分子動力学法、モンテカルロ法 Modylas

化学統計力学

RISM理論、分布関数理論

3D-RISM

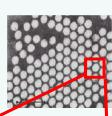
反応動力学

非断熱動力学、励起状態動力学

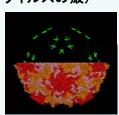
次世代ナノ生体物質・ナノ分子材料

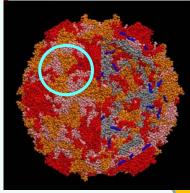
ウィルス全原子シミュレーション

<u>現状の研究</u> 断片のひとつ


断片のタンパク質が 240個集まって1個 のウイルスを構成

小児マヒ ウイルス "Medical Virology"


"Medical Virology", edited by D. O. White and F. Fenner, Academic Press


ウィルス全体1000万原子系の 分子動力学計算が必要

小児マヒウイルスのカプシド(タンパク質でできたウイルスの殻)

ウイルスカプシドに吸収された抗ウイルス剤 (カプシド上部は透明にして表示) PDF database

☆次世代スパコン☆

ウイルスと抗ウィルス剤の結合 による不活性化、抗体との特異 な相互作用の解析を実現。

1マイクロ秒の原子の動きを シミュレーションする:3ヶ月 (実効性能:1ペタフロップス)

未克服のウイルスに対する 予防法と治療法の開発、ひいては 創薬の効率化に寄与

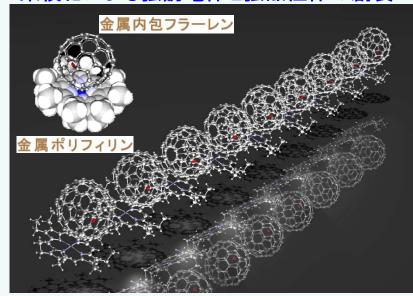
現状

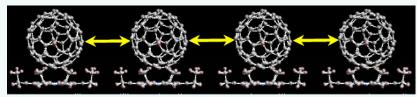
1マイクロ秒の原子の動きをシミュレーションする:500年(解析不可能) (実効性能 0.5テラフロップス)

中核アプリ:高並列汎用分子動力学シミュレーションソフト付加機能ソフト:熱力学的積分法、拡張アンサンブル法等

全ノード計算

☆さらに将来・エキサフロップス☆

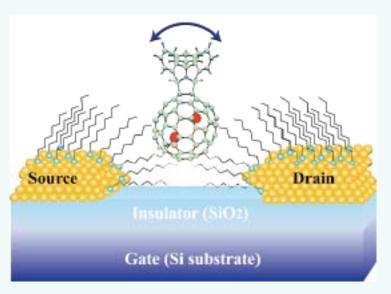

インフルエンザ、HIVウイルスの 丸ごとシミュレーション


10億原子系の全原子計算

次世代ナノ機能性材料

ナノ分子の集積化による機能の創発

集積化による強誘電体と強磁性体の創製


分子間の距離と配向の制御

金属ポリフィリン

層間相互によるスピン配向の制御

電場制御と分子配向スイッチ

これらの丸ごとの量子化学計算は不可能

次世代コンピュータで実現

革新的な機能分子の開拓 が実験に先立って可能

中核アプリ: FMO/MP2

数万ノード計算

人材育成 - 分子ナノサイエンスを例にとって

(1)若手研究者・若手研究リーダーの育成

- (i)ポスドク、大学院生等の研究参加による実践的育成
- (ii)若手独立研究グループの形成

(2)計算科学・計算機科学融合領域技術者の育成

- (i)高並列化、高速化、アルゴリズム
- (ii)計算科学者と計算機科学者の連携・融合

(3)実験研究者・企業研究者の育成

- (i)共同研究体制
- (ii)分子ナノサイエンス計算科学教育プログラムの活用

(4)大学院・社会人教育 一分子ナノサイエンス計算科学教育プログラムー

- (i)複数大学による大学院・社会人教育コンソーシアムの形成
- (ii)全国の大学院生、社会人に開かれた講義、演習、集中セミナー、 研究会、計算機実習、プログラム講習会
- (iii)ナノサイエンスの基礎科学と計算科学、計算機科学

分野を超えた取り組み

- (1)分野1、その他戦略機関との連携
 - (i)統計力学、量子化学、分子動力学法等の方法論、ソフトの提供
 - (ii)共通課題の連携研究
- (2) 理研計算科学研究機構、登録機関との連携
 - (i)ソフトの実行、高度化。神戸に常駐して作業
 - (ii)線形演算、FFT等の数学ライブラリ
 - (iii)教育·人材育成
 - ・次世代スパコンを用いた講習会、実習
 - 分子ナノサイエンス計算科学教育プログラムの神戸での実施