
2 21
2

()

hv

G U hvu

hv gh

 
 

  
  

2 21
()

2

hu

F U hu gh

huv

 
 
  
 
 
 

h

U hu

hv

 
 


 
  

Real-Time Tsunami Simulation on Multi-node GPU Cluster

Marlon Arce Acuña
1)

, Takayuki Aoki
2)

GSIC, Tokyo Institute of Technology (2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550)

1)
marlon.arce@sim.gsic.titech.ac.jp,

 2)
taoki@gsic.titech.ac.jp

Abstract： With the introduction of GPU, a new revolution has been opened in high performance computing.

For accurate early warning for Tsunami disasters, the shallow water equations must be solved in real-time.

Even single GPU enables 62-times faster calculation than 1 CPU core and the same domain decomposition is

available for multi-GPU computing, where the communications between GPUs are hidden by overlapping with

the computation. For the very large-size domain of 4096x8192 mesh with 90m resolution, the GPU Tsunami

simulation finishes within 3 minutes in the case of 8 GPUs. The CPU and GPU scalability is compared.

Excellent scalability has been achieved on TSUBAME GPU cluster.

1 Introduction

A Tsunami is among the most dangerous natural

disasters a country can be exposed to due to its force and the

threat to the people living in the coasts. To forecast a

Tsunami requires real time calculation to be able to give an

early evacuation warning as soon as possible. This requires

high performance computing which can be found in the GPU,

to reduce the long computation time.

This is why we embark using the new technology

provided by nVIDIA: CUDA [1] to increase the acceleration

to solve the Shallow Water Equation. Additionally solving it

in a highly parallelized structure gives an outstanding

improvement in the run time compared with that consumed

by previous calculations with regular CPU hardware and

single GPU. Pushing the envelope of acceleration

Multi-GPU was used and the problem was solved on the

newly introduced GPU Cluster at the Tokyo Institute of

Technology Super Computer, Tsubame.

2 Background

The Shallow Water Equation [2] can be written in the

following form:

() () ()t x yU F U G U S U   (1)

with:

(2)

where h is the water height, u and v are its velocities in the x

and y direction respectively, g the gravity and S a source

term.

3 Numerical Methods
3.1 Method of Characteristics

Since the Shallow Water Equation is a hyperbolic

equation it can be rewritten in its characteristic form and then

use its characteristic curves to find its solution. A matrix L is

used to diagonalize A, which is found from the

eigenvalues of A, from its eigenvectors and the Riemann

invariants. The point value i can be estimated as two

characteristics along C+ and C-. If the variables at the

upstream departure points of C±are denoted by 1n

i

 and

1n

iu  , where gh  , then they are given by:

To achieve high performance a directional splitting is

introduced to keep the calculation of the previously

mentioned methods as less intensive as possible.

3.2 Conservative Semi Lagrangian-IDO Method

To solve the Shallow Water Equation the CIP

Conservative Semi-Lagrangian IDO Method [3],[4] is used.

Two important reasons to work with this method are that it

provides a scheme with high accuracy as well as mass and

momentum conservation. In this method a point value in the

grid and an integrated value between the two adjacent points

are considered to find the result.

4 GPU Implementation

4.1 Single GPU implementation

Inside the GPU two kernels are run sequentially to solve

the directional splitting. First, the equations are calculated in

the x-direction: For this purpose the data is loaded from

global memory to shared memory in a structured similar to

that shown in Figure 1a. A line of length nx and width one

from the full domain is break down in four pieces and then

two blocks will compute them in two steps. For the y

direction the shared memory model changes. In this case a

square block instead of a line is used and each block will

compute twice its width hence filling all the computational

domain. From previous results[5] using a single GPU, an

outstanding improvement of 62 times was found when

compared the GPU and CPU runtimes.

4.2 Multi-GPU Computing
To solve the Shallow Water Equation in parallel using

GPU, the domain is decomposed, distributed along CPUs

and transferred to its GPU. MPI is be used to communicate

between CPUs, and the CUDA APIs to share data between

each GPU and its associated CPU, as shown in Figure 1b.

(a) Shared Memory (b) Multi-GPU

Fig. 1 Shared Memory and Multi-GPU Models

1 1 1
()

2 2

n

i u u    
     

 
 1 1

2() (3)
2

n

iu u u        

4.3 Transfer and Communication time hiding by overlap

 To transfer the data back and forth between CPU and

GPU two models were tested. One in which the

communications were done synchronously with the

calculation and other in which they were asynchronous, as

shown in Figure 2.

Fig. 2 CPU and GPU communication

In the asynchronous case the domain inner-part calculation is

overlapped with the data transfer, therefore when the

calculation time is longer than that of the communication an

even better performance is achieved by hiding the transfer.

Improvements of between 5 to 10% were observed for the

asynchronous over the synchronous model.

5 Results

To evaluate our scheme and the acceleration using GPU,

two test bathymetries were introduced with an initial wave

resembling the properties of a Tsunami (Fig. 3 and 1b). The

first bathymetry used was solved for four grid sizes: 512x512,

1024x1024, 2048x2048 and 4096x4096. The second

bathymetry is real data for Japan`s Tohoku region, adapted

from NASA’s SRTM Mission[6] and NOAA’s ETOPO[7]

with a 90m resolution and grid size 4096x8192, covering a

vast 370x735km area. First a single machine was chosen to

run the simulation and then on Tsubame’s GPU Cluster using

multi-node for high performance.

Fig. 3 Test Bathymetry with ongoing Tsunami Simulation

The specifications of the single machine in which the

computation was done are: CPU: Intel Core i7

CPU920@2.67GHz; 8GB Ram memory; GPU: GTX295 x 4.

For Tsubame Super Computer: Sun Fire X4600 server

(8AMD DualCore); 32GB Memory; GPU: Tesla S1070

(2GPU/node) and Infiniband Network Voltaire ISR 9288x8.

Fig. 4 Scalability for 2048x2048 Grid, single machine

The results for the GPU scalability are shown in Figure

4 for the 2048x2048 grid, this shows the runtime rates

between the multi GPU and the single GPU, when 2 and 4

GPUs were used, the dot line represents the ideal case. The

bigger the grid size the better the results because the

computing time increased giving chance to hide the

communication in the asynchronous model.

Fig. 5 Runtimes for Japan Bathymetry on Tsubame

In the case of the topography for Japan Tohoku region,

the calculation was done on Tsubame using multi-node

taking advantage of its high speed network, each node had 2

GPUs. The results can be seen in Figure 5 where the run time

per number of GPUs is shown. Figure 6 shows a comparison

of the CPU and GPU scalability using the single CPU as

based time. GPUs presented a high scalability with efficiency

around 90 and 98% moreover even though the CPU

scalability is not low the number of devices required to

match the GPU performance is overwhelming e.g. around

1024 CPUs are required to match 16 GPUs performance.

Fig. 6 GPU-CPU Scalability (1 CPU Core based)

6 Conclusion
Test bathymetries were used to study the acceleration

for a Tsunami simulation provided by GPUs. Based on the

outstanding speed up performance results on a single

machine and on Tsubame and the significant less number of

GPU devices required for high performance we see the

parallel GPU as a promising and revolutionizing technology

to develop a warning tool for a High Performance Real-Time

Tsunami Simulation

References
[1] CUDA Zone http://www.nvidia.com

[2] E.F. Toro. Shock-capturing methods for free-surface

shallow flows. John Wisley&Sons Ltd 2001, London

[3] T. Aoki, Comp. Phys. Comm., Vol.102, No.1-3,

132-146 (1997)

[4] Y. Imai, T. Aoki and K. Takizawa, J. Comp. Phys., Vol.

227, Issue 4, 2263-2285 (2008)

[5] GPU driven acceleration for solving the Shallow Water

Equation. Marlon Arce Acuña, Takayuki Aoki. JSMES

21st Conference, November 2008

[6] NASA SRTM www2.jpl.nasa.gov/srtm/index.html

[7] NOAA www.ngdc.noaa.gov/mgg/global/global.html

