
Distributed simulation of a spiking temporal-difference learning model 
based on dopamine-modulated plasticity  

Wiekbe Potjans
1,2

, Abigail Morrison
1
, Markus Diesmann

1,3 

1 RIKEN Brain Science Institute, Wako City, Saitama, Japan 

2 Institute of Neurosciences and Medicine, Research Center Juelich, Juelich, Germany 

3 Brain and Neural Systems Team, RIKEN Computational Science Research Program, Wako City, 

Saitama, Japan 

 

E-Mail: wiebke_potjans@brain.riken.jp 

 
An open question in the field of computational neuroscience is how higher organisms learn in 
environments with sparse rewards. We propose a spiking neural network model implementing 
temporal-difference (TD) learning based on dopamine modulated plasticity. For this purpose, we 
developed a general framework that enables distributed simulations of spiking neural networks 
with neuromodulated plasticity. Our network is able to learn a grid-world task with learning 
speed and equilibrium performance similar to a discrete-time TD algorithm. 

 
1 Introduction 
Making predictions about future rewards and 
adapting the behavior accordingly is crucial 
for any higher organism. One theory 
specialized for prediction problems is 
temporal-difference learning. Experimental 
findings suggest that TD learning is 
implemented by the mammalian brain. In 
particular, the resemblance of dopaminergic 
activity to the TD error signal [1] and the 
modulation of corticostriatal plasticity by 
dopamine [2] lend support to this hypothesis. 
We recently proposed the first spiking neural 
network model to implement actor-critic TD 
learning [3], enabling it to solve a complex 
task with sparse rewards. However, this 
model calculates an approximation of the TD 
error signal in each synapse, rather than 
utilizing a neuromodulatory system. 
 
2 Model and simulation technology 
Here, we propose a spiking neural network 
model (see figure inset) which dynamically 
generates a dopamine signal based on the 
actor-critic architecture proposed by Houk [4]. 
This signal modulates as a third factor the 
plasticity of the synapses encoding value 

function and policy. The implementation of 
neuromodulated plasticity in large-scale 
network simulations is challenging because 
the dynamics of these networks is commonly 
defined on the connectivity graph without 
explicit reference to the embedding of the 
nodes in physical space (e.g. NEST [5]). 
Therefore, we developed a general framework 
to simulate models with closed functional 
circuits that simultaneously represent 
synapses with neuro-modulated plasticity 
and neurons that release a neuromodulator 
in particular target regions. 

 
3 Results 
In our model learning is implemented on the 
level of synaptic plasticity. In this study, we 
would like to investigate the question of how 
the microscopic level of learning can be 
related to system-level learning. Therefore we 
test the learning behavior of our model in 
simulations performed in NEST [5], where an 
agent has to find a single rewarded state from 
a random position in a two dimensional 
grid-world task. During the learning process 
the synaptic weights implementing the value 
function and the policy develop such that they 



reflect the proximity to the reward and an 
optimal policy towards the reward, 
respectively. Learning can also be seen on the 
macroscopic level. Learning is achieved in 
less than 100 trials and stays stable for at 
least 400 trials. The learning speed and 
equilibrium performance are comparable to 
those of a discrete time algorithmic TD 
learning implementation (see figure; red: 
spiking network model, black: discrete time 
algorithm).  
 
5 Outlook 
Our model investigates the concept of 
temporal-difference learning in the basal 
ganglia, a small subpart of the brain 
important for reward learning. However, the 
basal ganglia are functionally embedded  in 
a closed loop in the brain with a major input 
coming from the cerebral cortex.  A network 
modeling such a closed loop requires high-end 
supercomputers as the number of neurons, 
synapses and computational load increases 
by at least one order of magnitude. For a 
cortex model of one cubic millimeter 
investigated intensively in our group as well 
as for networks of the same size  
implementing dopamine-modulated plasticity 
linear scaling has been demonstrated up to  
at least 1000 processors showing that they 
are likely to be suitable applications for 
high-end supercomputers  such as Japan's 
Next-Generation Supercomputer. Such  
closed-loop  models can be used  to perform 

lesion studies and to investigate the relation 
between electrophysiological studies and 
behavior.  
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