R&D field: Nano science

FMO Molecular Orbital Calculation

- Program name: GAMESS/FMO
- Developer
 - Kazuo Kitaura, D. G. Fedorov, and others, Scientists of Advanced Industrial Science and Technology (AIST)
- Abstract
 - □ Electron state calculation of large molecules such as protein.
 - Total energy calculation based on division of the target molecule into small fragments and on molecular orbital calculation of each fragment and fragment pair.
- Algorithm
 - Quantum chemistry calculation with the Hartree-Fock and other methods.
 - □ FORTRAN77 (partially C).
 - □ Parallelization with MPI.
- Current computation size
 - □ Each fragment is represented with 300 basis functions on the average.
 - \Box The number of fragments is about 500.
 - □ It takes five or six days with 48 nodes of PC (Xeon 3GHz dual).
 - Memory 500 MB (each process) and disk 300MB (each node).
- Future computation size in 2010
 - □ The number of fragments should be increased to around 20,000.
 - Estimated execution time is 60 hours with 10000 nodes of 100 CPUs.
 - $\hfill\square$ Memory 6 GB (each process) and disk 15 GB (each node).

FMO method

Electron state of a protein

- Expected results
 - It will be possible to estimate electron states of protein with 0.6-0.8 million atoms and 20,000 fragments if each fragment is composed of 30-40 atoms on the average.
 - Screening for drug design will be performed with high accuracy based on results of detailed electron-state calculation for in-vivo molecules because realistic numbers of water molecules can be introduced to a protein model in water solution.
- Reference
 - http://www.msg.ameslab.gov/GAMESS/GAMESS.html

