
R&D field: Nano science

First-Principles Molecular Dynamics Simulation within the Plane-Wave Pseudopotential formalism

- Program name: PHASE
- Developer
 - □ Revolutionary Simulation Software Project
 - Takahisa Ohno, Director of Computational Material Science Center of National Institute of Materials Science (NIMS)
- Abstract
 - □ First-principles calculation of electronic states of matters.
 - □ Analysis of structures and properties of matters based on the quantum theory of the electron.
- Algorithm
 - Density functional theory.
 - □ Plane-wave basis set.
 - □ First-principles pseudopotential method.
 - □ Fortran90 and C.
 - □ Parallel computation with MPI.
- Current computation size
 - □ Analysis of As-donor levels in Si with 5832-atom super cells.
 - Sustained performance 13.6 TFLOPS (384 nodes of Earth Simulator).
 - $\hfill\square$ Memory 3.1 TB and disk 0.2 TB.
- Future computation size in 2010
 - □ About 50,000 atoms.
 - $\hfill\square$ Memory 50 TB and disk 2 TB.

A ground-state wavefunction of As donors in Si

- Expected results
 - Exploration of non-silicon devices beyond the scaling limits based on quantum-mechanical functional analysis of post-35nm-generation nano devices.
 - Realization of high-density magnetic storage (1Tbit/inch² or more) with first-principles analysis of vertical magnetic storage.
 - Development of gene-level therapy and clarification of mechanism of copy, damage, and repair of genes based on reaction analysis between enzymes and DNA/RNA.
- Reference
 - Lage http://www.rss21.iis.u-tokyo.ac.jp/theme/multi/material/index.html

