R&D field: Life science

Ab initio Molecular Dynamics Calculation in Large-Scale Protein Systems

- Program name: ProteinDF
- Developer
 - □ Fumitoshi Sato, Associate Prof. of The Univ. of Tokyo
- Abstract
 - Precise and large-scale calculation of all-electron structure of complex proteins with canonical orbitals based on the density functional method.
 - Simulation of excited states, electron transition, and chemical reactions based on ab initio molecular dynamics calculation of excited states in addition to ground states.
- Algorithm
 - Ground states: canonical SCF calculation of molecular/XC integrals and matrix operations. The computation amount is proportional to the cube of the number of orbitals.
 - Excited states: The above plus the AO-direct algorithm. The computation amount is proportional to the fifth of the number of orbitals.
 C++ and MPL (the existing library for matrix operations, atom.
 - C++ and MPI (the existing library for matrix operations, atom decomposition for XC integrals, and the RT algorithm plus uniform decomposition with the shell-type classification for molecular integrals).
- Current computation size
 - □ 306 residues, 27,000 orbitals (ground states, the world's largest)
 - □ Sustained performance 300 GFlops (64 CPUs of Altix3700).
 - □ Memory 256 GB and disk 1 TB.
- Future computation size in 2010
 - □ Three times of the current computation size to deal with almost all proteins.
 - □ Analysis of dynamics of excited and ground states.
 - □ Memory 10 PB and disk 10 PB (excited states).

Difference with a classical result of electrostatic potential for the insulin hexamer

- Expected results
 - Improvement of quality and efficiency of drug development as well as increase of reliability of fundamental research of drug discovery.
 - □ Creation of next-generation R&D models for drug discovery.
 - Establishment of superiority to western countries over business-method and business-model patents.
 - Application of the method to catalysts, molecular device, and environmental substances.
- Reference
 - □ http://www.rss21.iis.u-tokyo.ac.jp/

